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Abstract
In this paper we first derive a general method which enables one to create
expressions for vortices and monopoles. By using this method we construct
several order-parameters describing the vortices and monopoles of Bose–
Einstein condensates with hyperfine spin F = 1 and F = 2. We concentrate
on defects which are topologically stable in the absence of an external magnetic
field. In particular we show that in a ferromagnetic condensate there can be
a vortex which does produce any superfluid flow. We also point out that the
order-parameter space of the cyclic phase of F = 2 condensate consists of
two disconnected sets. Finally we examine the effect of an external magnetic
field on the vortices of a ferromagnetic F = 1 condensate and discuss the
experimental preparation of a vortex in this system.

PACS numbers: 03.75.Mn, 03.75.Lm

1. Introduction

During the last ten years Bose–Einstein condensates (BECs) of alkali atoms have turned
out to be an excellent system to create and observe several interesting phenomena, such
as topological defects [1, 2]. The best-known topological defect is a vortex, which in a
typical single component BEC appears as a long-lived line-like singularity in the particle
density. In a non-rotating trap, a vortex state cannot be energetically the ground state of
the system, but its decay is prevented by topological reasons. The continuous deformations
of the order-parameter which are needed in order to reach the ground state require more
energy than what is available from e.g. thermal excitations. In the presence of dissipation
the vortex can move to the boundary of the condensate and vanish, but even then it is stable
as long as it stays in the condensate. The creation of spinor BECs has made it possible to
have more complicated vortices and other topological structures than what are allowed by
a single component condensate [2–4]. By spinor condensates we mean BECs which have
all spin components trapped simultaneously and where spin dynamics between different spin
components is possible. For these reasons spinor condensates allow for richer topological
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structures than single component condensates. In experiments spinor condensates are realized
by using an optical trap to trap the condensed atoms. If a BEC is in a magnetic trap, only
particles which are in a low-field seeking state with respect to the quantization axis determined
by the local magnetic field remain trapped. When an optical trap is used there can still be
magnetic fields present. They are not needed to trap atoms, but e.g. to diminish the effect of
stray magnetic fields [5–8].

The existence of the topological defects is based on the fact that a BEC can be described
by an order-parameter ψ . The order-parameter is a map from some region of physical space
into the order-parameter space M. By examining the properties of the order-parameter space
one can see what kind of, if any, topological defects are possible. This examination can be
carried out with the help of the homotopy groups of the order-parameter space.

The use of the theory of homotopy groups to characterize the topological defects of
physical systems was first used during the late fifties [9], but became widely known only in the
seventies; see e.g. [10]. Since then it has been successfully applied in several fields of physics,
such as condensed matter physics, particle physics and cosmology [10–15]. Homotopy
groups classify maps which can be continuously deformed into one another. Homotopy is a
mathematical notion giving an exact meaning for this kind of deformation. Homotopy groups
have turned out to be an effective way of characterizing and classifying topological defects.
This classification can be achieved if the order-parameter space M is identified with a quotient
space G/H , where G is a group that acts transitively on the order-parameter space and H is a
suitably chosen subgroup of G.

If G/H is known, information on the topological defects can be obtained by calculating
the homotopy groups πn(G/H), n = 0, 1, 2, 3. From these π0(G/H) characterizes domain
walls, π1(G/H) vortices and one-dimensional non-singular defects, π2(G/H) monopoles and
two-dimensional non-singular defects, and π3(G/H) three-dimensional non-singular defects.
Domain walls, vortices and monopoles are defects where the order-parameter has to vanish
at some point of the physical space. The non-singular defects are defects where the order-
parameter is nonzero everywhere, and the topological stability is imposed by the boundary
conditions. The elements of the homotopy group label the order-parameters in such a way
that those labelled by the same group element can be continuously converted into one another,
whereas if the configurations are labelled by different group elements, this is not possible. If
πn(G/H) = {e}, i.e. the nth homotopy group is a one-element group, no topologically stable
defects characterized by πn(G/H) are possible.

This paper is organized as follows. In section 2 we derive a systematic way to find
expressions for vortices and monopoles. This method is based on the properties of the relative
homotopy groups, and it has not been presented before. In section 3 we review the properties of
spinor condensates and their ground states. As a new result we show that the order-parameter
space of the cyclic phase of F = 2 condensate consists of two sets which are disconnected.
This is in contrast to the order-parameter spaces of other ground-state phases, which consist of
one connected set. In section 4 the method derived in section 2 is applied in the context of spinor
BECs to create order-parameters describing vortices and monopoles. Most of the expressions
for defects have not been presented before. These are then used to find the minimum energy
states of the defects and to study the superfluid velocity and angular momentum induced by
them. In particular we show that in a ferromagnetic condensate the presence of a vortex does
not have to lead to superfluid flow. In section 5 we show that the vortex of a ferromagnetic
F = 1 condensate derived in section 4 can exist also if the conservation of magnetization
is taken into attention. Additionally we show that in a ferromagnetic F = 1 condensate the
conservation of magnetization may lead to stabilization of defects which are not stable if the
magnetization is allowed to vary freely. In section 6 we propose a way to create vortices in
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a ferromagnetic condensate. These vortices are stable in the absence of an external magnetic
field. This way is based on the use of a topological vortex creation method used before to
create defects which are stable in the presence of an external field. Finally in section 7 we
summarize the results of the paper and in appendix A we give the spin and rotation matrices
needed in the calculation of defects.

2. Finding expressions for vortices and monopoles

2.1. Introduction

In this section we develop a method for finding explicit expressions for vortices and monopoles.
The content of this section is quite mathematical, and those interested only in the applications
may jump to the next section. We briefly introduce some of the necessary concepts and fix
the notation. To save space we do not define all mathematical concepts needed; an interested
reader can find the definitions in any standard book on homotopy theory, such as [16]. We also
omit all proofs here; those can be found in [10, 17]. From now on all maps are assumed to be
continuous. In the following G is a Lie group and H is a closed subgroup of G. The subgroup H
can be written as H = H0 ∪H1 ∪H2 ∪· · ·, where Hi’s are the path components of H. The path
component containing the identity element e is denoted by H0. It is a normal subgroup of H and
thus the quotient space H/H0 is a group. The path components of H are cosets of H in H0, i.e.
Hk = hkH0 for some hk ∈ H . We define the n-dimensional disc by Dn = {x ∈ R

n||x| � 1}
and the n-sphere by Sn = {x ∈ R

n+1||x| = 1}. We denote the nth relative homotopy by
πn(G,H, e) and an element of this group by [f ], where f : (Dn, Sn−1, s0) → (G,H, e) is
a map. Here the notation means that Dn is taken to G, Sn−1 to H, and s0 ∈ Sn−1 to e by
f . By [f ] we denote the equivalence class determined by f . It consists of all maps which
are homotopic via maps of this type. If H = e, we write πn(G, e) ≡ πn(G, e, e). If G
is path connected, πn(G, g1) and πn(G, g2) are isomorphic for all g1, g2 ∈ G, and we use
the notation πn(G) to denote any πn(G, g1). There is an exact sequence of homomorphisms
between relative homotopy groups. This sequence reads

�αn
πn(G, e) �βn

πn(G,H, e)

�
πn(G/H,H)

p∗

�γn
πn−1(H, e) �αn−1

πn−1(G, e) �βn−1 · · · . (1)

We have included in the sequence p∗, which is an isomorphism determined by the map
p : G → G/H, g �→ gH . If [f ] ∈ πn(G,H, e) then p∗([f ]) = [pf ] ∈ πn(G/H,H).

2.2. Physical applications

Next we consider how previous results can be applied in physical systems. Now G is a
group that acts transitively on the order-parameter space M. The action of g ∈ G on x ∈ M

is denoted by g · x. We now choose an arbitrary element xref ∈ M , called the reference
order-parameter, and define H = {g ∈ G|g · xref = xref}. This is the isotropy group and it
is a closed subgroup of G. The order-parameter space M can then be identified with G/H .
The correspondence between the elements of M and G/H is x ⇔ gH, g · xref = x. If A is a
topological space and f : A → G is a map, then the map pf : A → G/H gives a map from
A to the order-parameter space, which is now represented by G/H . If the order-parameter
space is represented by M the corresponding map from A to M is given by c : A → M such
that c(a) = f (a) · xref for all a ∈ A. When discussing the physical applications we assume
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that π2(G, e) = π1(G, e) = π0(G, e) = {e}, when γ1 and γ2 become isomorphisms. These
conditions hold for R and SU(2), which are the groups used in this paper.

2.2.1. Monopoles. Because π1(H, e) = π1(H0, e), we see that π2(G,H, e) and π1(H0, e)

are isomorphic via γ2. The map γ2p
−1
∗ gives an isomorphism between π2(G/H,H) and

π1(H0, e). This isomorphism can be used in the calculation of π2(G/H,H), since usually
it is quite easy to see what π1(H0, e) is [3, 10, 11]. Assume that [f ] ∈ π2(G,H, e) and
that f |S1 is the restriction of f to S1, the boundary of D2. Then [f |S1 ] ∈ π1(H0, e). The
isomorphism γ2 is given by the map [f ] �→ [f |S1 ]. We use (θ, ϕ) as the coordinates of D2,
that is, θ is the distance from the centre of the disc and ϕ is the azimuthal angle. We take
the radius of D2 to be π . Let g : [0, 2π ] → H0 be a map for which g(0) = g(2π) = e

and let g̃ : D2 → G be such that g̃(θ = π, ϕ) = g(ϕ). If we also define s0 = (π, 0),
then [g̃] ∈ π2(G,H0, e), [pg̃] ∈ π2(G/H,H) and [g̃|S1 ] = [g̃|θ=π ] = [g] ∈ π1(H0, e). As
explained above, [pg] and [g] are mapped into each other by isomorphism γ2p

−1
∗ .

Next we construct a map from physical space into the order-parameter space G/H which
describes a monopole with some given winding number. Now we use spherical coordinates
(r, θ, ϕ) as the coordinates of the physical space R

3 and assume that the monopole is located
at the origin. The monopole we construct is independent of the r-coordinate. This assumption
is not necessary, but to avoid further complication we use it here. Let A = R

3 \ {0}. We define
f : A → G/H by f (r, θ, ϕ) = g̃(θ, ϕ)H . Then for each fixed r > 0 [f ] ∈ π2(G/H,H)

and [f ] is the unique inverse image of [g] ∈ π1(H0, e) in the map γ2p
−1
∗ . These elements

have the same winding number. Thus if one wants a map f : A → G/H , which describes
a monopole with a given winding number, he has to find g̃ : D2 → G such that [g̃|θ=π ] is
an element of π1(H0, e) with the wanted winding number. Then f is obtained by defining
f (r, θ, ϕ) = g̃(θ, ϕ)H . The corresponding order-parameter x : A → M is defined by
x(r, θ, ϕ) = g̃(θ, ϕ) · xref .

2.2.2. Vortices. The group structure of π0(H, e) has to be defined a little differently than that
of other relative homotopy groups [10]. We define π0(H, e) ≡ H/H0 = {H0,H1,H2, . . .}
and D1 = [0, 2π ]. Let g : D1 → G be such that g(0) = e and g(2π) ∈ Hm for
some m ∈ {0, 1, 2, . . .}. If we choose s0 = 0 then [g] ∈ π1(G,H, e). The isomorphism
γ1 : π1(G,H, e) → π0(H, e) is given by [g] �→ [g(2π)], where [g(2π)] ≡ Hm.

We use cylindrical coordinates (r, z, ϕ) as the coordinates of physical space and assume
that the vortex is located on the z-axis. We define A = R

3\Rez, where R ez denotes the
z-axis. We define f : A → G such that f (r, z, 0) = e and f (r, z, 2π) ∈ Hm. Then for each
fixed (r, z) [f ] ∈ π1(G,H, e), [pf ] ∈ π1(G/H,H) and the image of [f ] in the isomorphism
γ1 is [f (r, z, 2π)] = Hm ∈ π0(H, e). Thus f gives a vortex with the winding number
represented by Hm ∈ π0(H, e). The corresponding order-parameter x : A → M is defined
by x(r, z, ϕ) = f (r, z, ϕ) · xref . For a vortex constructed this way x(r, z, 0) = xref for all
r > 0, z ∈ R. This requirement can be relaxed, but for our purposes that is not necessary.

3. Spinor Bose–Einstein condensates

In this section we review the ground-state order-parameter spaces of spinor BECs. As a new
result we show that the order-parameter space of the cyclic phase consists of two disconnected
sets. A spinor in one set cannot be continuously converted into a spinor in the other set while
staying in the order-parameter space all the time. Only the order-parameter space of the cyclic
phase has this structure, since in other ground states the order-parameter space is connected.
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A spinor condensate of atoms with hyperfine spin equal to F,F = 1, 2, . . . , is described
in the mean-field theory by the order-parameter ψ , which can be written in the form
ψ(r) = √

n(r)ξ(r), where n(r) is the particle density, ξ(r) is the transpose of the complex
vector (ξF(r), ξF−1(r), . . . , ξ−F (r)) and ξ(r)†ξ(r) = 1 [4, 18]. In the rest of the paper we
call ξ the spinor. In some publications the term spinor refers to ψ , so one must be careful
with the terminology. When we determine the order-parameter space, we set the density
equal to one, so the order-parameter is just the spinor ξ .1 If the normalization of ξ is the only
restriction imposed on the order-parameter, the order-parameter space becomes S4F+1. This
space allows for no topological defects characterized by πn with n = 0, 1, 2, 3. This is because
from the theory of homotopy groups it is known that πn(S

4F+1) = {e} for n = 0, 1, 2, 3 and
F = 1, 2, 3, . . . . However, for example the order-parameter space of an F = 1 condensate
may be only a subset of S5. This can be inferred from the energy functional, which for an
F = 1 condensate in the absence of external magnetic field reads [4, 18]

E[ψ] =
∫

d3r

{
h̄2

2M

+1∑
i=−1

∇ψ∗
i (r) · ∇ψi(r) + V (r)n(r) +

n(r)2

2
[α1 + β1〈F〉2]

}
. (2)

Here F is the (hyperfine) spin operator, 〈F〉 = ξ †(r)Fξ(r),M is the mass of the atom, V is the
external potential, α1 = 4πh̄2

M

a0+2a2
3 , β1 = 4πh̄2

M

a2−a0
3 , and aF is the s-wave scattering length in

the total spin F channel.
One sees that it is energetically favoured that either |〈F〉| = 0 or |〈F〉| = 1, corresponding

to the cases β1 > 0 and β1 < 0, respectively. When β1 > 0 the system is said to be
antiferromagnetic, whereas if β1 < 0 the system is said to be ferromagnetic. It turns out
that a group that acts transitively on the set of spinors fulfilling the condition |〈F〉| = 1 is
SU(2). This can be shown using a similar reasoning as that shown below in the context of the
ground-state phases of F = 2 condensates. SU(2) acts via its irreducible three-dimensional
representation, i.e. the spin rotations of an F = 1-particle. For spinors with |〈F〉| = 0
we choose G = R × SU(2), where R gives the gauge transformations of the spinor as
ξ �→ eiθ ξ, θ ∈ R. As before, SU(2) describes spin rotations.

For an F = 2 condensate the energy functional is [19]

E[ψ] =
∫

d3r

{
h̄2

2M

2∑
i=−2

∇ψ∗
i (r) · ∇ψi(r) + V (r)n(r) +

n(r)2

2
(α2 + β2〈F〉2 + γ2|	(r)|2)

}
.

(3)

Here α2 = 1
7 (4g2 + 3g4), β2 = − 1

7 (g2 − g4) and γ2 = 1
5 (g0 − g4) − 2

7 (g2 − g4), where

gi = 4πh̄2ai

M
and 	 = 2ξ2ξ−2 − 2ξ1ξ−1 + ξ 2

0 . As in an F = 1 system, the energy is invariant
in position-independent spin rotations and gauge transformations. The possible ground states
have been calculated in [19, 20], and can be classified as follows. (i) If β2, γ2 > 0 the energy

1 In principle the order-parameter space should be written as M ′ = (R+ × M) ∪ {0}, where R+ is the set of real
numbers larger than zero giving the possible values of the square root of the density, and M gives the order-parameter
space related to the density-independent part of the order-parameter. Now M consists of the possible values of the
spinor, while in the case of a single component condensate M = S1, which characterizes the possible values of
the phase of the order-parameter. The point {0} denotes the case where the density is zero. One sees that if M ′ is
the order-parameter space there are no topologically stable defects. Any order-parameter can be converted into any
other order-parameter via deformations which reduce the density to zero in an appropriate region of the physical
space. From a physical point of view this is unlikely to happen, since reducing density to zero is not energetically
favourable. In principle the necessary energy could come for example from thermal excitations, but in practice this is
unlikely to happen. Thus one can ignore the zero of density. Then the order-parameter space becomes R+ × M . For
this πn(R+ × M) = πn(R+) × πn(M) = πn(M), since πn(R+) = {e}. Thus, from the point of view of topological
defects, it is enough to study the structure of M only.
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is minimized when |〈F〉| = 	 = 0. Spinors with these properties are called cyclic. (ii) When
β2 < 0, γ2 > 0 the minimum is obtained by making |〈F〉| = 2,	 = 0, and the ground state
is ferromagnetic. (iii) If β2 > 0, γ2 < 0 the minimum is achieved by maximizing 	, i.e.
|	| = 1, and |〈F〉| = 0. The ground state is called polar or antiferromagnetic. (iv) Finally,
if α2 and β2 are both negative, the ground state is ferromagnetic for 4|β2| > |γ2|, and polar
otherwise. This is because |〈F〉| and |	| cannot be maximized simultaneously.

Next we discuss briefly the structures of the order-parameter spaces of the ground
states. Since the interaction energy is invariant in gauge transformations and spin rotations
and β2, γ2 are arbitrary, also |	| and 〈F〉2 are invariant in gauge transformations and
spin rotations. Furthermore, for every spinor ξ there is always a spin rotation R which
rotates the spinor so that in the rotated state Rξ the spin is parallel to the z-axis, i.e.
〈F〉 = (Rξ)†FRξ = (Rξ)†FzRξ ez = 〈Fz〉 ez. In the rotated state 〈Fx〉 = 〈Fy〉 = 0.
Thus the spin-dependent terms in equation (3) can be written as β2〈Fz〉2 + γ2|	|2. In the
cyclic phase the energy is minimized when 〈Fz〉 = |	| = 0. Numerical calculations show
that the solutions to these equations are (up to a gauge transformation and a rotation about the
z-axis) C0 = 1

2 (1, 0,
√

2, 0,−1)T , C1 = 1√
3
(1, 0, 0,

√
2, 0)T and C1′ = 1√

3
(0,

√
2, 0, 0, 1)T

[21, 22]. All cyclic spinors can be obtained from these spinors by a gauge transformation and
a spin rotation. By exploiting the rotation matrix shown in the appendix one can show that
C1, C1′ can be rotated into each other, while for C0, C1 and C0, C1′ this is not possible. This
means that the order-parameter space of the cyclic phase consists of two disconnected sets, a
fact that has not been pointed out before. Formally this can is expressed as π0(G/H) = Z2.
The group G = R × SU(2) acts transitively on both disconnected set. In the ground state, the
system can consist of regions, some of which are in a C0 state and others are in a C1 state.
These regions are separated by a domain wall. This kind of structure is not possible in other
zero-field ground-state phases of F = 1 or F = 2 condensates.

In the case of ferromagnetic ground states, the situation is simpler. Now the equations to
be solved are |	| = 〈Fx〉 = 〈Fy〉 = 0 and |〈Fz〉| = 2. The only solutions (up to a phase) are
|F = 2,mF = 2〉 and |F = 2,mF = −2〉. These spinors can be rotated into each other, so the
order-parameter space is now connected. By examining the spinors obtained by a spin rotation
from the reference order-parameters one sees that in the case of a ferromagnetic condensate
we can choose G = SU(2) instead of R × SU(2).

Similar study for the polar phase shows that the order-parameter space of the polar phase
is connected but larger than R × SU(2). This complicates the study of polar defects, and they
will not be discussed here [3].

Before going to the details of defects we review the possible ground-state phases of some
alkali atom condensates. Experimental and theoretical results indicate that the F = 1 spinor
Bose–Einstein condensate of 87Rb is ferromagnetic [4, 6, 8, 23]. On the other hand, the F = 2
condensate of 87Rb is probably polar [6, 7, 23]. The 85Rb F = 2 condensate seems to be polar
[23] and the 83Rb isotope with F = 2 ferromagnetic [19].

23Na scattering lengths determined in [24] indicate that 23Na F = 1 is antiferromagnetic,
as has been predicted in [4] and seen in experiments [5]. The ground-state phase of 23Na
F = 2 spinor condensate appears also to be antiferromagnetic [19]. Experimental study of
this condensate is difficult because the |F = 2,mF = 0〉 state decays within milliseconds [25].

4. Examples of defects in spinor condensates

Next we present several examples of vortices and monopoles in spinor condensates. In these
examples cylindrical coordinates (r, z, ϕ) and spherical coordinates (r, θ, ϕ) are used when
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discussing vortices and monopoles, respectively. In vortices the coordinate dependence is such
that at ϕ = 0 the reference spinor is obtained. The vortex cores are assumed to be straight
and located on the z-axis. Monopoles are located at the origin of the spherical coordinates. In
what follows the minimum energy of a vortex with given winding number is also studied. This
is calculated under the assumptions that the vortex stays fixed at the z-axis and the density n
is independent of ϕ. The ground-state density can be assumed to cylindrically symmetric if
the external potential used to confine the condensate is cylindrically symmetric and the vortex
does not split. The latter is not true in general, since usually if a condensate is trapped in
a harmonic trap it is energetically favourable for a vortex with winding number larger than
one to split into winding number one vortices. In this case the particle density cannot be
cylindrically symmetric. The splitting can possibly be prevented by using a trap which is
steeper than harmonic [26] or by applying a repulsive potential in the vicinity of the rotation
axis [27, p 245].

4.1. Ferromagnetic condensates

Next we briefly examine the vortex configurations of ferromagnetic condensates. Here we
mean by ferromagnetic condensates systems whose ground-state spinor is |F,mF = F 〉 or
any other spinor obtained from this by a spin rotation. A separate gauge transformation is
now unnecessary, as a spin rotation alone is able to produce that. We choose |F,mF = F 〉
as our reference order-parameter. The isotropy group is isomorphic with Z2F and the order-
parameter space is SU(2)/Z2F; see [28]. The isotropy group for F = 1 and F = 2 has been
calculated explicitly in [3]. The winding numbers of topologically stable vortices range from
1 to 2F − 1. If the winding number of a vortex is m, the winding number of the antivortex is
2F −m. Especially, a vortex with winding number F is also its antivortex. If F = 1, the order-
parameter space is SO(3), since SU(2)/Z2 = SO(3) [4]. Because π2(SU(2)/Z2F) = {e}, in
ferromagnetic condensates monopoles are not topologically stable. Next we construct order-
parameters describing vortices in ferromagnetic F = 1 and F = 2 condensates. The rotation
matrices needed in the calculations can be found in appendix A.

4.1.1. Ferromagnetic F = 1 condensate. Now H = {I,−I} ∈ SU(2) and, as explained
in section 2, a vortex is given by a map f : R

3\Rez → SU(2) such that f (r, z, 0) = I

and f (r, z, 2π) = −I for every z ∈ R, r > 0. From the V -matrix (A.4) one sees that
this kind of map is obtained by choosing τ such that τ(r, z, 0) = 0 and τ(r, z, 2π) = 2π .
The functions α and β can be arbitrary functions of position. The corresponding order-
parameter is ψ(r) = √

n(r)ξ(r), where ξ(r) = f (r) · ξref = V (1)(r)ξref and V (1) is given in
equation (A.6). We get

ψ(r, z, ϕ) =
√

n(r, z, ϕ)




(
cos τ

2 − i cos β sin τ
2

)2

−√
2 eiα sin β sin τ

2

(
i cos τ

2 + cos β sin τ
2

)
−e2iα sin2 τ

2 sin2 β


 . (4)

From the way this was derived it follows that this is defined only for r > 0. This order-
parameter can, however, be extended to whole R

3 by requiring that n(0, z, ϕ) = 0. This is
needed in order to keep the order-parameter well defined at r = 0.

Next we try to find a spinor giving a vortex with the minimum energy. Now the superfluid
velocity is v = −i h̄

M
ξ †∇ξ . When the vortex has the smallest possible energy the velocity in

radial and z-directions can be assumed to vanish and thus the spinor is a function of ϕ only.
Additionally, the density is taken to be cylindrically symmetric. Using these assumptions the
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Euler–Lagrange equations obtained from the energy functional show that the vortex energy is
minimized when α = constant, β = π

2 and τ(r, z, ϕ) = ϕ. Thus the vortex takes the form

ψ(r, z, ϕ) =
√

n(r, z)




(
cos ϕ

2 − i cos β sin ϕ

2

)2

−√
2 eiα sin β sin ϕ

2

(
i cos ϕ

2 + cos β sin ϕ

2

)
−e2iα sin2 ϕ

2 sin2 β


 . (5)

Here we have not set β = π
2 , but have allowed it to have any value. This recalls a little the

expression for the coreless vortex shown in [4]. These are, however, different defects, since the
vortex of equation (5) cannot be converted into a non-vortex state by continuous deformations,
whereas for the coreless vortex this can be done2. Another difference is that in the case a
of coreless vortex the particle density does not vanish, while in the case of (5) the density
vanishes on the z-axis. The superfluid velocity for the vortex state (5) is v = − h̄

M

cos β

r
eϕ and if

β = π
2 it vanishes. Thus, in contrast to a single-component condensate, in a spinor condensate

the existence of a vortex does not have to lead to a nonzero superfluid velocity. The same
phenomenon can be seen also in the orbital angular momentum. For the order-parameter (5) it
is L = −Nh̄ cos βez, which also vanishes if β = π

2 . The condensate does not have to contain
any orbital angular momentum although there is a vortex in it. If the condensate is in a state
with β = 0, it contains one unit of angular momentum per particle and the system is similar
to a single-component condensate with a vortex. In the presence of dissipation the angular
momentum does not have to be conserved, and the vortex can evolve towards the ground state
where the angular momentum vanishes. The kinetic energy of (5) is proportional to 3+cos 2β,
which decreases monotonically as β increases from zero to π

2 . Thus there is no energetic
barrier which could render the vortex state with β = 0 metastable against conversion into the
ground-state vortex.

A vortex obtained from (5) by setting β = 0 has been presented before in [4]. The general
expression for the vortex shown in equation (5) or the behaviour of the angular momentum
and superfluid velocity have, however, not been discussed before. This also holds true of the
ferromagnetic F = 2 vortices discussed next.

4.1.2. Ferromagnetic F = 2 condensate. The isotropy group is H = {I,−iσz, (−iσz)
2,

(−iσz)
3}, where σz is the z-component of the Pauli matrices. A map fm : R

3\R ez → SU(2)

represents a vortex with winding number m if fm(r, z, 0) = I and fm(r, z, 2π) = (−iσz)
m

for every z ∈ R, r > 0. If we parametrize SU(2) matrices as in (A.4), these conditions are
fulfilled if τ(r, z, 0) = 0 and τ(r, z, 2π) = mπ . Additionally, for m = 1, 3 the condition
β(r, z, 2π) = 2kπ has to hold. Here k is an arbitrary integer. For m = 2 the function β can
be arbitrary. The order-parameter becomes

ψ(r, z, ϕ) =
√

n(r, z, ϕ)




(
cos τ

2 − i cos β sin τ
2

)4

2 eiα sin τ
2 sin β

(
i cos τ

2 + cos β sin τ
2

)3√
3
8 e2iα sin2 β

(
cos β − cos τ cos β + i sin τ

)2

2 e3iα sin3 τ
2 sin3 β

(
i cos τ

2 + sin τ
2 cos β

)
e4iα sin4 τ

2 sin4 β




. (6)

The minimum energy of a vortex with winding number m is obtained when τ(r, z, ϕ) = mϕ

2
and ξ = ξ(ϕ). If m = 2 the vortex minimizing the energy is obtained from equation (6)

2 The conservation of magnetization may change the situation. This is discussed in section 5.
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by replacing τ with ϕ and setting β = π
2 . In this state, the superfluid velocity and

angular momentum vanish. We show that this is a general property of a winding number
F vortex in a ferromagnetic condensate with hyperfine spin F. This vortex is represented
by the element −I ∈ H and a vortex can be written as ψ(r, z, ϕ) = √

n(r, z)ξ(ϕ),
where ξ(ϕ) = e−iϕn·Fξref, n = (cos α sin β, sin α sin β, cos β) is a constant vector and
ξref = |F,mF = F 〉. If β = π

2 we get n = (cos α, sin α, 0) and vϕ, Lz ∼ ξ † ∂
∂ϕ

ξ =
−iξref eiϕn·Fn · F e−iϕn·Fξref = −iξrefn · Fξref = 0.

If m = 1, 3 the function β that minimizes the energy of a vortex is more difficult to find.
The obvious choice β ≡ 0 is not the correct one, since for example β(ϕ) = 8π+ϕ

5 produces
a smaller energy. Finding the ground states of vortices with m = 1, 3 will be left for future
publications, and will not be discussed here in more detail. If β = 0 the vortex is simply
ψ(r, z, ϕ) = √

n(r, z) eimϕ|F = 2,mF = 2〉,m = 1, 3.

4.2. Antiferromagnetic F = 1 condensate

It is advantageous to use the U matrix of equation (A.3) and corresponding representation
matrices when discussing the defects of an antiferromagnetic F = 1 condensate. The
reference order-parameter is chosen to be |F = 1,mF = 0〉 and the isotropy group is H ={
(m2π,U(ϕ, 0, 0)),

((
m + 1

2

)
2π, gU(ϕ, 0, 0)

)∣∣ϕ ∈ [0, 4π ],m ∈ Z
}
, where we have defined

g = U(0, π, 0). The connected component of the identity is H0 = {(0, U(ϕ, 0, ϕ))|ϕ ∈
[0, 2π ]} [3]. Now vortices and monopoles are possible and both of them are classified by
integers. A general antiferromagnetic spinor can then be written as ψ(r) = √

n(r)ξ(r), where
ξ(r) = eiθ(r)U(1)(r)ξref and U(1) is shown in (A.5). Explicitly

ψ(r) =
√

n(r) eiθ(r)




−e−iα(r) 1√
2

sin β(r)

cos β(r)
eiα(r) 1√

2
sin β(r)


 . (7)

4.2.1. Vortices. As can be seen from the isotropy group H, vortices with winding numbers
m and m + 1

2 are possible (m ∈ Z). Using an analysis similar to that of ferromagnetic
condensates, a vortex with a winding number m can be shown to be given by (7) if θ fulfils
the condition θ(r, z, 0) = 0, θ(r, z, 2π) = 2πm. Other angles can be chosen freely as long
as ξ(r, z, 0) = ξ(r, z, 2π) = |F = 1,mF = 0〉. For m + 1

2 condensates the requirements are
θ(r, z, 0) = 0, θ(r, z, 2π) = 2π

(
m + 1

2

)
and ξ(r, z, 0) = −ξ(r, z, 2π) = |F = 1,mF = 0〉.

The superfluid velocity is v = h̄
Mr

∂θ
∂ϕ

eϕ and it cannot vanish everywhere if there is a vortex

in the system. The orbital angular momentum is L = Nh̄lez, where l is either m or m + 1
2 .

In the following we assume that ψ(r, z, ϕ) = √
n(r, z)ξ(ϕ). The spinor minimizing the

energy of a vortex with winding number m ∈ Z is obtained when α, β are constants and
θ(ϕ) = mϕ. If we choose β = 0 it becomes ψm(r, z, ϕ) = √

n(r, z) eimϕ |F = 1,mF = 0〉. A
winding number m + 1

2 vortex with minimum energy is given by (7) under the conditions that
θ(r, z, 2π) = (

2m + 1
2

)
π, α is constant and β = ϕ

2 ,

ψm+ 1
2
(r, z, ϕ) =

√
n(r, z) ei(m+ 1

2 )ϕ




−e−iα 1√
2

sin ϕ

2

cos ϕ

2

eiα 1√
2

sin ϕ

2


 . (8)

Properties of vortices of type (8) have been discussed before for example in [29–32].
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4.2.2. Monopoles. As explained in section 2, an expression for a winding number m
monopole can be found as an extension of a map gm : [0, 2π ] → H0, where gm determines
the element of π1(H0, e) with winding number m. Now we define gm(ϕ) = (0, U(αm(ϕ),

0, αm(ϕ))), where αm is such that αm(0) = 0, αm(2π) = 2πm. We define a map g̃m :
D2 → R × SU(2) such that g̃m(π, ϕ) = gm(ϕ). Then fm : R

3\{0} → [R × SU(2)]/H,

fm(r, θ, ϕ) = g̃m(θ, ϕ)H gives a monopole with winding number m. A general form
for g̃m is g̃m(θ, ϕ) = (δm(θ, ϕ), U(αm(θ, ϕ), βm(θ, ϕ), αm(θ, ϕ))) with the conditions
αm(π, ϕ) = αm(ϕ), βm(π, ϕ) = δm(π, ϕ) = 0, which follow from g̃m(θ = π, ϕ) = gm(ϕ).
From the continuity of g̃m it also follows that δm(0, ϕ) = 0 and βm(0, ϕ) = (2k + 1)π with k
an arbitrary integer.

By a simple change of basis equation (7) can be cast in the form

ψm(r, ϕ, θ) =
√

n(r, θ, ϕ) eiδ


cos αm sin βk

sin αm sin βk

−cos βk


 . (9)

Here we have substituted δ, αm, βk for θ, α, β, respectively. If δ ≡ 0 the above spinor is a real
and normalized three-component vector. Then there is an integral equation

w = 1

4π

∫ 2π

0

∫ π

0
dϕ dθ ξ ·

(
∂ξ

∂θ
× ∂ξ

∂ϕ

)
(10)

which gives the winding number w of the monopole; see [12] or [33]. Using this equation
one can confirm that by assuming δm ≡ 0 and that gm fulfils the conditions stated above, the
winding number of the spinor in equation (9) is m. For a non-constant δm the winding number
is the same, as it does not depend on the form of δm. From equation (9) one sees that the
superfluid velocity vanishes if and only if δm is a constant function. This follows from the fact
that δ ≡ constant ⇐⇒ ξ †∇ξ ∈ R

3. Because v = −i h̄
M

ξ †∇ξ ∈ R
3, it follows that v = 0 if

and only if δm is a constant.
While it is instructive to know what are the general requirements for a spinor to represent a

monopole, it is important to see that the typical expression for a monopole can also be obtained
as a special case of above equations. If we choose gm such that δm ≡ 0, αm(θ, ϕ) = mϕ and
βm(θ, ϕ) = (2k + 1)(π − θ), where k is an arbitrary integer, all the requirements for δm, αm

and βm are fulfilled and the monopole becomes

ψm(r, ϕ, θ) =
√

n(r, θ, ϕ)


cos(mϕ) sin[(2k + 1)θ ]

sin(mϕ) sin[(2k + 1)θ ]
cos[(2k + 1)θ ]


 . (11)

Choosing k = 0 gives the usual expression for a monopole. It has been presented in the context
of BEC before for example in [34, 35], but the requirements for a general expression of a
monopole and its properties have not been discussed before. A monopole with m = 1, k = 0
has been numerically studied in [34, 35].

4.3. Cyclic states

The defects of the C0 phase have already been discussed in [3], so here we concentrate on
the defects of the C1 phase. The isotropy group H has not been calculated before, so we
have to do it here. For the SU(2)-matrices we now use the U-representation shown in (A.3).
The reference spinor is chosen to be C1 = 1√

3
(1, 0, 0,

√
2, 0)T and a general expression for a
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spinor is

ψ(r, z, ϕ) =
√

n(r, z, ϕ) eiθ




e−2i(α+γ )√
3

[
cos4 β

2 − √
2 e3iγ sin2 β

2 sin β
]

e−i(α+2γ )√
6

[
e3iγ (cos β − cos(2β)) +

√
2 cos2 β

2 sin β
]

e−2iγ

4 sin β[−4 e3iγ cos β +
√

2 sin β]
ei(α−2γ )√

6

[
e3iγ (cos β + cos(2β)) +

√
2 sin2 β

2 sin β
]

e2i(α−γ )√
3

[
sin4 β

2 +
√

2 e3iγ cos2 β

2 sin β
]




. (12)

Equating this with the reference spinor C1 shows that the isotropy group is H = {(
2π
3 (2n+3m),

U
(

2πn
3 , 0, 0

))∣∣m ∈ Z, n = 0, . . . , 5
} ⊂ R × SU(2) and H0 = (0, I). This means that only

vortices, not monopoles, are topologically stable. H/H0 = H is isomorphic to the group
Z×Z6, the isomorphism is given by the map

(
2π
3 (2n+3m),U

(
2πn

3 , 0, 0
)) �→ (m, n) ∈ Z×Z6.

Therefore vortices are classified by two winding numbers (m, n) and those with different m
cannot be converted into one another. However, for vortices with winding numbers (m, n) and
(m, n + 6) this is possible.

A vortex with winding numbers (m, n) is given by fm,n : R
3\R ez → R × SU(2) such

that fm,n(r, z, 0) = e and fm,n(r, z, 2π) = (
2π
3 (2n + 3m),U

(
2πn

3 , 0, 0
))

for all z ∈ R, r > 0.
Now we define fm,n by fm,n(r, z, ϕ) = (

ϕ

3 (2n + 3m),U
(

ϕn

3 , 0, 0
))

. The corresponding order-
parameter is

ψ(r, z, ϕ) =
√

n(r, z)




1√
3

eiϕm

0
0√

2
3 eiϕ(m+n)

0




. (13)

This is also the order-parameter that minimizes the vortex energy. The superfluid velocity and
angular momentum are v = − h̄

Mr

(
m + 2n

3

)
eϕ and L = Nh̄

(
m + 2n

3

)
ez.

5. Effects of external magnetic field and magnetization

So far we have assumed that there is no external magnetic field present. Now we consider
the situation where the condensate is placed in a magnetic field directed parallel to the z-axis.
To the second order in the strength B of the magnetic field the energy from the field can be
written as [27]

EB[ψ] =
∫

d3r n(r)
[
γB(r)〈Fz〉 + εB2(r)

〈
F 2

z

〉]
, (14)

where γ and ε are constants. For 87Rb and 23Na these are γ = ±µB

2 and ε = ∓ µ2
B

4�Ehf
.

Here µB is the Bohr magneton, �Ehf is the hyperfine splitting between F = 2 and
F = 1 states and upper (lower) sign refers to F = 2 (F = 1). In the presence of a
magnetic field, the conservation of magnetization has to be taken into attention. If the
magnetic field is parallel to the z-axis the magnetization is defined by M = ∫

d3r n(r)〈Fz〉 =∫
d3r n(r)

∑F
j=−F j |ξj (r)|2(h̄ = 1). Magnetization can have any value between −NF and

NF , where N is the particle number. In the absence of an external magnetic field the
magnetization is a meaningless quantity because of the lack of a well-defined quantization
axis of the hyperfine spin. In the presence of a magnetic field the magnetization is a well-
defined and often conserved quantity since the collisions that do not conserve magnetization
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occur usually in a timescale much longer than a typical lifetime of the condensate. The
conservation of magnetization has been experimentally verified [6, 8]. Thus the energy of the
system should be minimized under the assumption of fixed M. If we consider weak values of
the magnetic field it is enough to include only the first term in equation (14) in the energy. If
the magnetic field is spatially constant this term is just magnetization multiplied by a constant.
Thus the ground state is determined by the value of magnetization, and does not depend on the
strength of the magnetic field, as long as the quadratic term in the magnetic field is negligible.

If the external field is absent the minimum of energy is obtained (if F = 1) when
either |〈F〉| = 0 or |〈F〉| = 1. If external field is present the energy has to be minimized
under the assumption of conserved magnetization. For a ferromagnetic F = 1 condensate
any magnetization can be produced while |〈F〉| = 1. Thus in this case the ground state is
obtained if one finds an order-parameter which produces the given magnetization and fulfils the
condition |〈F〉| = 1. On the other hand, if |〈F〉| = 0 the only possible value for magnetization
is zero. If the magnetization is nonzero and the system is antiferromagnetic, the condition
|〈F〉| = 0 cannot be satisfied everywhere. In this case the calculation of the ground state is
more difficult. The situation is similar in the cyclic and polar (antiferromagnetic) phases of
F = 2 system.

Next we assume that only the term linear in the magnetic field is included in the energy
and show that the previously calculated vortex of a ferromagnetic F = 1 condensate is
possible for an arbitrary value of the magnetization. Direct calculation shows that for the
vortex of equation (5) the magnetization is N cos2 β. Any magnetization between 0 and N can
be obtained as β is varied between π

2 and 0. The vortex with minimum energy is obtained
when magnetization vanishes. Because equation (5) is obtained using |F = 1,mF = 1〉 as
the reference order-parameter, it is not surprising that positive values of magnetization are
favoured by it. A vortex configuration which has negative magnetization can be obtained by
choosing |F = 1,mF = −1〉 as the reference spinor and calculating a representative of a vortex
as before. The magnetization turns out to be equal to −N cos2 β. The vortices corresponding
to different choices of the reference order-parameter have different magnetizations, but if
the magnetization is allowed to vary, these vortices can be converted continuously into one
another. Thus they are similar from topological point of view.

Next we see that setting magnetization fixed makes new kind of defects stable. If we
choose β = π

2 in equation (4), multiply the spinor by eiθ and redefine α → α + π
2 , we get

ψ(r, z, ϕ) =
√

n(r, z, ϕ)




eiθ cos2 τ
2

1√
2

ei(α+θ) sin τ

ei(2α+θ) sin2 τ
2


 . (15)

This is an alternative parametrization for a ferromagnetic spinor. From the form of the order-
parameter one might assume that a vortex is obtained if θ = mϕ and α = nϕ with m, n integers.
Like before, we assume that the vortices are straight and located on the z-axis. We also require
that n = n(r, z), τ = τ(r, z). The latter assumptions mean that the particle density of each
spin component is cylindrically symmetric3. The magnetization is M = ∫

d3r n(r) cos τ(r, z),
which shows that (15) can produce any magnetization if τ is chosen properly. Topologically
the decay of a vortex in one component can now only be achieved by converting all atoms from
that spin state into other states. From the above spinor one sees that always two components
vanish simultaneously. When this happens magnetization is ±N . Thus if the magnetization is
fixed and different from ±N , one cannot make any spin component vanish while keeping the
magnetization fixed. If the magnetization is different from ±N , the order-parameter space is

3 These kinds of vortices are called axisymmetric in [37, 39].
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S1 ×S1, since the phase of two components can be chosen freely. The dynamical stability and
dynamics of these type of vortices has been studied in [36–40]. However, their topological
stability following from the conservation of magnetization has not been pointed out before.
If the order-parameter is of the form (15), vortices appear in each spin component separately.
This means that the total density does not have to vanish, unless there is a vortex in every
component. If there is one spin component without vortex the system is a coreless vortex. For
example by choosing m = 0, n = 1 or m = 1, n = −1 one gets an expression for a coreless
vortex.

If the magnetization is not a conserved quantity, vortices with even m can be converted
into a uniform configuration and those with odd m are equivalent with the winding number
one vortex of equation (5). This is because in zero field τ can be converted into a map for
which τ(r) = 0 holds for all r. Then the spinor becomes eimϕ |F = 1,mF = 1〉. This in turn
is equivalent with a vortex with winding number zero or one for m even or odd, respectively;
see [4].

Above we have assumed that the particle densities of different spin components are
symmetric. It is possible that a deviation from this allows a continuous decay of vortex. This
is also indicated by numerical studies [39].

If the magnetic field is strong, the term quadratic in the magnetic field has to be included
in the energy. Also in this case the magnetization is conserved, and vortices which are possible
when only the linear term is included remain topologically stable.

6. Creation of defects

Next we propose a method to create vortices in a ferromagnetic condensate. These vortices are
topologically stable also in the absence of an external magnetic field. In [41, 42] a way to create
a vortex exploiting the spin degree of freedom has been studied. In this method a condensate
in a low-field seeking state is prepared in an Ioffe–Pritchard trap. Initially the magnetic field
in the z-direction is assumed to be much stronger than the magnetic field B⊥ in the xy-plane.
The z-component of the field Bz is then reversed slowly, while keeping B⊥ fixed. In this way
a vortex with winding number 2F is created, F being the hyperfine spin of the condensate
atoms. The feasibility of this method has been experimentally verified using a 23Na condensate
prepared in the low-field seeking states |F = 1,mF = −1〉 or |F = 2,mF = +2〉 [43]. Since
a vortex with a winding number larger than one is energetically unstable against decay into
winding number one vortices, it is presumed that vortices created this way will split. In the
case of F = 1 23Na condensate this has been seen to occur [44], and it is expected to happen
also in the F = 2 case. In addition to creating defects which are stable in the presence of
magnetic field, we propose how a modification of this method can be used to create 2F vortices
with winding number one in a ferromagnetic condensate with hyperfine spin F. These vortices
are stable in the absence of an external magnetic field. To create these vortices, in addition to
an Ioffe–Prichard trap, an optical trap is needed. First a vortex with winding number 2F is
created in the previously described way. Then one waits until the vortex decays into winding
number one vortices. Then B⊥ is turned off, and the optical trap is turned on simultaneously.
This does not change the spin state because it is assumed that Bz � B⊥. The remaining field
in the z-direction can then be reduced to zero, and vortices are allowed to evolve in the optical
trap. If the magnetic trap is turned off before the vortex has split, the vortex can in principle
continuously convert into a non-vortex state. This is possible, for example, if the vortex
reverses the rotation which was used to create it. This is prevented by letting the vortex split
before turning off the Ioffe–Pritchard trap. In experiments there are usually stray ac magnetic
fields, so the creation of zero-field defects requires effective magnetic shielding, which can be
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troublesome. Achieving this would, however, be rewarding, as it would allow one to change
the topological stability of vortices as a function of the magnetic field.

The creation of monopoles is not as straightforward as that of vortices, but a method for
this has been proposed in [45].

7. Conclusions

In this paper we have first derived a systematic way to create explicit expressions for vortices
and monopoles. This method requires the calculation of the first and second homotopy groups
of the order-parameter space G/H . This can be achieved by using equations obtained from
the exact sequence of relative homotopy groups. After this the expressions for defects can be
constructed by finding suitable mappings from the physical space into the group G.

We have created examples of vortices and monopoles in spinor Bose–Einstein condensates
using this method. Especially the defects in zero external magnetic field have been discussed.
We have presented examples of vortices in ferromagnetic F = 1 and F = 2 condensates
and vortices and monopoles in antiferromagnetic F = 1 condensate. We also pointed out
that the order-parameter space of the cyclic phase of F = 2 condensate consists of two
disconnected sets. The properties of one of the sets have been studied previously in [3]. Here
we calculated the topological defects of the other set and showed that vortices classified by
Z × Z6 are topologically stable, whereas monopoles are not possible. Also the superfluid
velocity induced by the defects is examined. It has been shown that in a ferromagnetic
condensate with hyperfine spin F the presence of a vortex with winding number F does not
have to induce nonzero superfluid velocity or orbital angular momentum.

We have also studied the effect of a magnetic field, concentrating on a ferromagnetic
F = 1 condensate. It has been shown that a vortex which is topologically stable in the
absence of a magnetic field is also possible if the magnetization has a fixed value. This means
that it is also possible if there is a homogeneous magnetic field present. In addition to this,
we have found out that the conservation of magnetization may stabilize vortices which are not
topologically stable if the magnetization can vary freely. Thus there can be a transition from
a vortex state to a non-vortex state as the magnetic field strength is lowered to zero. Finally a
method to create vortices which are topologically stable in the absence of a magnetic field has
been suggested.
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Appendix. Spin matrices and rotation operators

The spin matrices for F = 1 are

Fx = 1√
2


0 1 0

1 0 1
0 1 0


 , Fy = 1√

2


0 −i 0

i 0 −i
0 i 0


 , Fz =


1 0 0

0 0 0
0 0 −1


 ,

(A.1)
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and those of F = 2 are

Fx = 1

2




0 2 0 0 0
2 0

√
6 0 0

0
√

6 0
√

6 0
0 0

√
6 0 2

0 0 0 2 0


 , Fy = i

2




0 −2 0 0 0
2 0 −√

6 0 0
0

√
6 0 −√

6 0
0 0

√
6 0 −2

0 0 0 2 0


 ,

Fz =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2


 .

(A.2)

Here we have set h̄ = 1. Depending on the system studied, the elements of SU(2) have been
written either in the form

U(α, β, γ ) = e−iαFz e−iβFy e−iγFz =
(

cos β

2 e−i(α+γ )/2 − sin β

2 ei(γ−α)/2

sin β

2 e−i(γ−α)/2 cos β

2 ei(α+γ )/2

)
, (A.3)

or in the form

V (τ, α, β) = e−i τ
2 n · σ =

(
cos τ

2 − i sin τ
2 cos β −i e−iα sin τ

2 sin β

−i eiα sin τ
2 sin β cos τ

2 + i sin τ
2 cos β

)
, (A.4)

where n = (cos α sin β, sin α sin β, cos β) and σ = (σx, σy, σz) is a vector formed from
Pauli matrices. The V -matrix has been used when discussing the ferromagnetic condensates,
otherwise the U-matrix has been used. (2F + 1)-dimensional irreducible representations
of these matrices are given by the maps U(α, β, γ ) �→ U(F)(α, β, γ ) and V (τ, α, β) �→
V (F)(τ, α, β). Here U(F)(α, β, γ ) = exp(−iαFz) exp(−iβFy) exp(−iγFz), V

(F)(τ, α, β) =
exp(−iτn · F) and F is the spin operator of spin F system. In this paper, we need explicit
expressions for U(F) and V (F) for F = 1, 2. For F = 1 these are

U(1)(α, β, γ ) =




e−i(α+γ ) cos2 β

2 −e−iα 1√
2

sin β e−i(α−γ ) sin2 β

2

e−iγ 1√
2

sin β cos β −eiγ 1√
2

sin β

ei(α−γ ) sin2 β

2 eiα 1√
2

sin β ei(α+γ ) cos2 β

2


 (A.5)

and

V (1)(τ, α, β) =




(
cos τ

2 − i cos β sin τ
2

)2
e−iα sin β

(−1+cos τ) cos β−i sin τ√
2

−√
2 eiα sin β sin τ

2

(
i cos τ

2 + cos β sin τ
2

)
cos2 τ

2 + cos(2β) sin2 τ
2

−e2iα sin2 τ
2 sin2 β −eiα sin β

(−1+cos τ) cos β+i sin τ√
2

−e−i2α sin2 τ
2 sin2 β

−e−iα sin β
(−1+cos τ) cos β+i sin τ√

2(
cos τ

2 + i cos β sin τ
2

)2


 . (A.6)
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For F = 2 the spin rotation matrix is

U(2)(α, β, γ ) =




e−2i(α+γ ) cos4 β

2 −e−i(2α+γ ) sin β cos2 β

2 e−2iα
√

6
4 sin2 β

e−i(α+2γ ) sin β cos2 β

2 e−i(α+γ ) 1
2 (cos β + cos 2β) −e−iα

√
6

4 sin 2β

e−2iγ
√

6
4 sin2 β e−iγ

√
6

4 sin 2β 1
4 (1 + 3 cos 2β)

ei(α−2γ ) sin β sin2 β

2 ei(α−γ ) 1
2 (cos β − cos 2β) eiα

√
6

4 sin 2β

e2i(α−γ ) sin4 β

2 ei(2α−γ ) sin β sin2 β

2 e2iα
√

6
4 sin2 β

−e−i(2α−γ ) sin β sin2 β

2 e−2i(α−γ ) sin4 β

2

e−i(α−γ ) 1
2 (cos β − cos 2β) −e−i(α−2γ ) sin β sin2 β

2

−eiγ
√

6
4 sin 2β e2iγ

√
6

4 sin2 β

ei(α+γ ) 1
2 (cos β + cos 2β) −ei(α+2γ ) sin β cos2 β

2

ei(2α+γ ) sin β cos2 β

2 e2i(α+γ ) cos4 β

2


 . (A.7)
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